The dynamic properties of intermediate filaments during organelle transport.

نویسندگان

  • Lynne Chang
  • Kari Barlan
  • Ying-Hao Chou
  • Boris Grin
  • Margot Lakonishok
  • Anna S Serpinskaya
  • Dale K Shumaker
  • Harald Herrmann
  • Vladimir I Gelfand
  • Robert D Goldman
چکیده

Intermediate filament (IF) dynamics during organelle transport and their role in organelle movement were studied using Xenopus laevis melanophores. In these cells, pigment granules (melanosomes) move along microtubules and microfilaments, toward and away from the cell periphery in response to alpha-melanocyte stimulating hormone (alpha-MSH) and melatonin, respectively. In this study we show that melanophores possess a complex network of vimentin IFs which interact with melanosomes. IFs form an intricate, honeycomb-like network that form cages surrounding individual and small clusters of melanosomes, both when they are aggregated and dispersed. Purified melanosome preparations contain a substantial amount of vimentin, suggesting that melanosomes bind to IFs. Analyses of individual melanosome movements in cells with disrupted IF networks show increased movement of granules in both anterograde and retrograde directions, further supporting the notion of a melanosome-IF interaction. Live imaging reveals that IFs, in turn, become highly flexible as melanosomes disperse in response to alpha-MSH. During the height of dispersion there is a marked increase in the rate of fluorescence recovery after photobleaching of GFP-vimentin IFs and an increase in vimentin solubility. These results reveal a dynamic interaction between membrane bound pigment granules and IFs and suggest a role for IFs as modulators of granule movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanobiomechanical Properties of Microtubules

Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...

متن کامل

Actin Dynamics Is Essential for Myosin-Based Transport of Membrane Organelles

Actin filaments that serve as "rails" for the myosin-based transport of membrane organelles [1-4] continuously turn over by concurrent growth and shortening at the opposite ends [5]. Although it is known that dynamics of actin filaments is essential for many of the actin cytoskeleton functions, the role of such dynamics in myosin-mediated organelle transport was never studied before. Here, we a...

متن کامل

Cytoskeletal elements in bacteria.

All cytoskeletal elements known from eukaryotic cells are also present in bacteria, where they perform vital tasks in many aspects of the physiology of the cell. Bacterial tubulin (FtsZ), actin (MreB), and intermediate filament (IF) proteins are key elements in cell division, chromosome and plasmid segregation, and maintenance of proper cell shape, as well as in maintenance of cell polarity and...

متن کامل

High voltage electron microscopy studies of axoplasmic transport in neurons: a possible regulatory role for divalent cations

Light and high voltage electron microscopy (HVEM) procedures have been employed to examine the processes regulating saltatory motion in neurons. Light microscope studies demonstrate that organelle transport occurs by rapid bidirectional saltations along linear pathways in cultured neuroblastoma cells. HVEM stereo images of axons reveal that microtubules (Mts) and organelles are suspended in a c...

متن کامل

Single microtubules from squid axoplasm support bidirectional movement of organelles.

Single filaments, dissociated from the extruded axoplasm of the squid giant axon and visualized by video-enhanced differential interference contrast microscopy, transport organelles bidirectionally. Organelles moving in the same or opposite directions along the same filament can pass each other without colliding, indicating that each transport filament has several tracks for organelle movement....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 122 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2009